skip to main | skip to sidebar

Abad Biología

  • Inicio
  • Acerca de mi
  • Soporte
  • Contacto
Powered By Blogger



Datación por radiocarbono

martes, 4 de noviembre de 2008

Publicado por Webmaster en 4:35 0 comentarios  

La datación por radiocarbono es un método de datación radiométrica que utiliza el isótopo carbono-14 (14C) para determinar la edad de materiales que contienen carbono hasta unos 60.000 años.

Dentro de la arqueología es considerada una técnica de datación absoluta. La técnica fue descubierta por Willard Libby y sus colegas en 1949 cuando ocupaba su cargo como profesor en la universidad de Chicago. En 1960, Libby fue premiado con el Premio Nobel en química por su método de datación mediante el carbono 14.

El Carbono tiene dos isótopos estables no radiactivos, carbono-12 (12C), y carbono-13 (13C). Además hay minúsculas cantidades de isotopos inestables de carbono-14 (14C) en la Tierra. El carbono-14 tiene un periodo de semidesintegración de 5730 años y podría haber desaparecido de la tierra hace mucho tiempo si no fuera por los incesantes impactos de rayos cósmicos sobre el nitrógeno en la Atmósfera de la Tierra, donde se forma más isótopos. (De hecho el mismo proceso ocurre en la atmósfera rica en nitrógeno del satélite de Saturno Titan.) Cuando los rayos cósmicos entran en la atmósfera, experimentan varias transformaciones, incluyendo la producción de neutrones. Los neutrones resultantes participan en la siguiente reacción en la que uno de N átomos son lanzados fuera de la molécula de nitrógeno(N2) en la atmósfera:


La tasa más alta de producción de carbono-14 tiene lugar en altitudes entre 9 y 15 km (30,000 y 50,000 ft), y en altas latitudes geomagnéticas, pero el carbono-14 se esparce uniformemente sobre la atmosfera y reacciona con el oxígeno para formar dioxido de carbono. Este dioxido de carbono también penetra en los océanos, disolviendose en el agua. El proceso de fotosíntesis incorpora el átomo radiactivo en las plantas de manera que la proporción 14C/12C en éstas es similar a la atmosférica. Los animales incorporan, por ingestión, el carbono de las plantas. Ahora bien, tras la muerte de un organismo vivo no se incorporan nuevos átomos de 14C a los tejidos y la concentración del isótopo va decreciendo conforme va transformándose en 14N por decaimiento radiactivo:

Así pues, al medir la cantidad de radiactividad en una muestra de origen orgánico se calcula la cantidad de 14C que aún queda en el material. Así puede ser datado el momento de la muerte del organismo correspondiente.

Poliploidía

Publicado por Webmaster en 4:13 0 comentarios  


La poliploidía es un incremento del número de cromosomas característico del complemento diploide; por ejemplo, la no disyunción de los cromosomas en la meiosis lleva a la aparición de individuos (4n), los cuales estarán aislados reproductivamente de la especie, a pesar de poder reproducirse sexualmente.




La poliploidía se produce por irregularidades de la meiosis: en la primera división (profase), cuando los cromosomas homólogos se aparean para formar tétradas, y no se separan durante la anafase I; esto origina una célula con todo el complemento cromosómico y la otra con ninguno, donde la primera pasa por la segunda división meiótica y produce gametos diploides. Por lo tanto si este gameto se une con otro normal producirá un cigoto triploide (estéril).
Por su origen los poliploides pueden ser:


Autopoliploides: derivados de un sólo diploide por multiplicación de sus cromosomas


Alopoliploides derivados de un híbrido entre dos diploides


Clasificación


La poliplodía se divide de este modo:

Euploidía

Es la alteración numérica en la dotación total de los cromosomas.
Se clasifica en:

Monoploide

Organismo que contiene solo un complemento del juego básico de cromosomas de la especie, se expresa como n ó x. Se presenta en organismos inferiores, como en los hongos, en abejas y avispas machos; en plantas por lo general da lugar a organismos estériles.

Triploide

Los triploides son individuos que poseen tres juegos completos de cromosomas (3n). Pueden surgir por diversos medios. Si ocurren alteraciones en la meiosis normal de un indiduo diploide, por ejemplo, se pueden formar gametos diploides (también llamados "gametos no reducidos") que pueden ser fecundados por gametos haploides de la misma especie, dando lugar a un autotriploide (3n). Los triploides son bastante raros ya que, si bien pueden ser viables, como ocurre en la mayoría de las plantas, son generalmente estériles debido a la formación de gametos defectuosos. Esto se debe a que el apareamiento y la migración de los cromosomas homólogos durante la meiosis no es el normal lo que determina la separación de los cromosomas de los tres juegos o dotaciones ocurra al azar, con la consiguiente formación de núcleos con un complemento cromosómico desequilibrado. Este desequilibrio describe el hecho de que, para cada par de cromosomas homólogos de la especie en cuestión, un triploide producirá gametos que lleven dosis múltiples de cromosomas o bien, gametos deficientes para uno o más cromosomas. Debido a que el desarrollo de los gametos (y de los cigotos que surgen por fusión de los mismos) depende del tipo y de la cantidad apropiada de información genética, los gametos con exceso o defecto en el número de cromosomas tendrán un serio impedimento en su desarrollo y, por ende, los individuos que los producen serán altamente estériles.
Los triploídes se caracterizan por ser estériles, no es común encontrarlos en forma natural.
Ejemplo. En el hombre aparece una forma triploíde (69,XXX), con 69 cromosomas. No se debe confundir con 47,XXX, (diploide con 3 copias del cromosoma X, un caso de aneuploidía). Posee mandíbulas pequeñas, fusión de los dedos en manos y pies, además, tiene desarrollo anormal del cerebro. Generalmente el feto sufre aborto o si llega a nacer no vive mucho tiempo.

Tetraploides

Individuo que posee cuatro juegos de cromosomas (4n). La duplicación se lleva a cabo con compuestos químicos, como el alcaloide llamado colchicina. se forma cuando se unen dos gametos diploídes de la misma especie.
Ejemplos: variedades de manzana, cerezas, peras, sandías, zarzamoras y trigo. En el caso de manzanas, cerezas y peras, al aparecer como tetraploídes dan origen a frutos más grandes para su comercialización.

Autotetraploides

Individuos que poseen cuatro juegos de cromosomas homólogos completos(4n). Son fértiles cuando se producen gametos equilibrados, formándose cuando se unen dos gametos no reducidos de individuos pertenecientes a la misma especie.

Especiación por poliploidía

Alotetraploides

Individuos que poseen cuatro juegos de cromosomas no homólogos (4n). Por lo general son fértiles, se forman al unirse dos gametos diploídes de dos especies diferentes. El caso más importante es el Triticale; este cereal es un híbrido alotetraploide de trigo (Triticum sativum) y centeno (Secale cereale).

Aneuploidía

(ANEU=IMPAR; PLOIDIA=UNIDAD). Son organismos cuyo número de cromosomas no es múltiplo del número básico del grupo.
Se dividen en:

Nulosómicos
Se presenta cuando un organismo ha perdido un par de cromosomas (se presenta como 2n – 2). Es mortal para los diploídes; en poliploídes se pueden perder dos cromosomas homólogos de un grupo y sobreviven; en trigo hexaploide (6n – 2) se manifiesta con reducción de vigor y fertilidad y sobreviven hasta la madurez.

Monosómicos Se presenta en organismos diploídes cuando pierden un cromosoma de un par (2n – 1). Se manifiesta con una alta mortalidad o reducción de la fertilidad.

Trisómico
Lo presentan individuos diploídes que poseen un cromosoma extra (2n+1); es decir, uno de los pares de cromosomas tiene un miembro extra. Esto produce diferentes fenotipos; en humanos la presencia de un pequeño cromosoma extra produce el síndrome de Down (se presenta cuando en el par 21 del óvulo o espermatozoide no se separan y estos contienen 24 cromosomas en lugar de 23, cuando uno de estos se aparea con otro del sexo contrario y normal, dará individuos de 47 cromosomas). Esto se presenta como un accidente en el complejo proceso meiótico; el individuo con este síndrome difiere en aspectos físicos e intelectuales de individuos normales.

Doble Trisómico
Se produce cuando cada uno de dos cromosomas diferentes se presenta por triplicado, representándose como (2n+1+1).

Tetrasómico Se presenta por multiplicado un cromosoma de un organismo diploide, representado como (2n+2).

Ley de Hardy-Weinberg

martes, 21 de octubre de 2008

Publicado por Webmaster en 5:41 0 comentarios  

Ley de Hardy-Weinberg

El principio de Hardy-Weinberg para dos alelos: el eje horizontal muestra las dos frecuencias alélicas p y q, el eje vertical muestra la frecuencia de los genotipos y los tres posibles genotipos se representan por los distintos glifos

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy-Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.

En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.

Teoría endosimbiótica

Publicado por Webmaster en 5:33 0 comentarios  

La teoría endosimbiótica postula que algunos orgánulos propios de las células eucariotas, especialmente plastos y mitocondrias, habrían tenido su origen en organismos procariotas que después de ser englobados por otro microorganismo habrían establecido una relación endosimbiótica con éste. Se especula con que las mitocondrias provendrían de protebacterias alfa (por ejemplo, rickettsias) y los plastos de cianobacterias.

La teoría endosimbiótica fue popularizada por Lynn Margulis en 1967,[1] con el nombre de endosimbiosis serie, quien describió el origen simbiogenético de las células eucariotas.[2] También se conoce por el acrónimo inglés SET (Serial Endosymbiosis Theory). En su libro de 1981, Symbiosis in Cell Evolution,[3] [4] Margulis sostiene que las células eucariotas se originaron como comunidades de entidades que obraban recíprocamente y que terminaron en la fusión de varios organismos.[5] En la actualidad, se acepta que las mitocondrias y los cloroplastos de los eucariontes procedan de la endosimbiosis. Pero la idea de que una espiroqueta endosimbiótica se convirtiera en los flagelos y cilios de los eucariontes no ha recibido mucha aceptación, debido a que estos no muestran semejanzas ultraestructurales con los flagelos de los procariontes y carecen de ADN.



La teoría endosimbiótica describe el paso de las células procariotas (células bacterianas, no nucleadas) a las células eucariotas (células nucleadas constituyentes de los procariontes y componentes de todos los pluricelulares) mediante incorporaciones simbiogenéticas

Margulis describe este paso en una serie de tres incorporaciones mediante las cuales, por la unión simbiogenética de bacterias, se originaron las células que conforman a los individuos de los otros cuatro reinos (protistas, animales, hongos y plantas).

Según la estimación más aceptada, hace 2.000 millones de años (aunque una horquilla posible podría descender a la cifra de 1.500 millones de años) la vida la componían multitud de bacterias diferentes, adaptadas a los diferentes medios. Margulis destacó también, la que debió ser una alta capacidad de adaptación de estas bacterias al cambiante e inestable ambiente de la Tierra en aquella época. Hoy se conocen más de veinte metabolismos diferentes usados por las bacterias frente al único usado por los pluricelulares: el aeróbico (que usan el oxígeno como fuente de energía; las plantas utilizan dos: aeróbico y fotosíntesis). Para Margulis, tal variedad revela las dificultades a las que las bacterias se tuvieron que enfrentar y su capacidad para aportar soluciones a esas dificultades.

Primera incorporación simbiogenética:

Una bacteria consumidora de azufre, que utilizaba el azufre y el calor como fuente de energía (arquea fermentadora o termoacidófila), se fusionó con una bacteria nadadora (espiroqueta) pasando a formar un nuevo organismo sumando sus características iniciales de forma sinérgica (en la que el resultado de la incorporación de dos o más unidades adquiere mayor valor que la suma de sus componentes). El resultado fue el primer eucarionte (unicelular eucariota) y ancestro único de todos los pluricelulares. El núcleoplasma de la células de animales, plantas y hongos sería el resultado de la unión de estas dos bacterias.
A las características iniciales de ambas células se le sumó una nueva morfología más compleja con una nueva y llamativa resistencia al intercambio genético horizontal. El ADN quedó confinado en un núcleo interno separado del resto de la célula por una membrana.
Esta parte de la teoría (incorporación de la espiroqueta) no es aceptada en la actualidad, pues sólo la defienden Margulis y sus asociados. Ninguna de las homologías propuestas entre los flagelos de los eucariontes y de las espiroquetas[8] [9] ha resistido el escrutinio.[10] [11] La homología de la tubulina a la proteína bacteriana de replicación/citoesqueleto FtsZ parece rematar definitivamente la causa contra Margulis, puesto que la FtsZ se encuentra nativamente en las arqueas, proporcionando un antepasado endógeno a la tubulina (en oposición a la hipótesis de Margulis de que la arquea había adquirido la tubulina de una espiroqueta simbiótica).
Segunda incorporación simbiogenética:

Este nuevo organismo todavía era anaeróbico, incapaz de metabolizar el oxígeno, ya que este gas suponía un veneno para él, por lo que viviría en medios donde este oxigeno, cada vez más presente, fuese escaso. En este punto, una nueva incorporación dotaría a este primigenio eucarionte de la capacidad para metabolizar oxigeno. Este nuevo endosombionte, originariamente bacteria respiradora de oxigeno de vida libre, se convertiría en las actuales mitocondrias y peroxisomas presentes en las células eucariotas de los pluricelulares, posibilitando su éxito en un medio rico en oxígeno como ha llegado a convertirse el planeta Tierra. Los animales y hongos somos el resultado de esta segunda incorporación.
Tercera incorporación simbiogenética:

Esta tercera incorporación originó el Reino vegetal, las recientemente adquiridas células respiradoras de oxígeno fagocitarían bacterias fotosintéticas y algunas de ellas, haciéndose resistentes, pasarían a formar parte del organismo, originando a su vez un nuevo organismo capaz de sintetizar la energía procedente del Sol. Estos nuevos pluricelulares, las plantas, con su éxito, contribuyeron y contribuyen al éxito de animales y hongos.
En la actualidad permanecen las bacterias descendientes de aquellas que debieron, por incorporación, originar las células eucariotas; así como aquellos protistas que no participaron en alguna de las sucesivas incorporaciones.

Los caracteres específicos son más variables que los caracteres genéricos

Publicado por Webmaster en 5:27 0 comentarios  

Los caracteres específicos son más variables que los caracteres genéricos

El principio discutido bajo el epígrafe anterior puede aplicarse a la cuestión presente. Es evidente que los caracteres específicos son mucho más variables que los genéricos. Explicaré con un solo ejemplo lo que esto quiere decir: si en un género grande de plantas unas especies tuviesen las flores azules y otras las flores rojas, el color sería un carácter solamente específico y nadie se extrañaría de que una de las especies azules se convirtiese en roja, o viceversa; pero si todas las especies tuviesen flores azules, el color pasaría a ser un carácter genérico, y su variación sería un hecho más extraordinario. He elegido este ejemplo porque no es aplicable en este caso la explicación que darían la mayor parte de los naturalistas, o sea: que los caracteres específicos son más variables que los genéricos, debido a que están tomados de partes de menos importancia fisiológica que los utilizados comúnmente para clasificar los géneros. Creo que esta explicación es, en parte, exacta, aunque sólo de un modo indirecto; como quiera que sea, insistiré sobre este punto en el capítulo sobre la clasificación.

Sería casi superfluo aducir pruebas en apoyo de la afirmación de que los caracteres específicos ordinarios son más variables que los genéricos; pero, tratándose de caracteres importantes, he observado repetidas veces en obras de Historia Natural, que cuando un autor observa con sorpresa que un órgano o parte importante, que generalmente es muy constante en todo un grupo grande de especies, difiere considerablemente en especies muy próximas, este carácter es con frecuencia variable en los individuos de la misma especie. Y este hecho muestra que un carácter que es ordinariamente de valor genérico, cuando desciende en valor y llega a hacerse sólo de valor específico, muchas veces se vuelve variable, aun cuando su importancia fisiológica puede seguir siendo la misma. Algo de esto se aplica a las monstruosidades; por lo menos, Isidore Geoffroy Saint-Hilaire no tiene, al parecer, duda alguna de que, cuanto más difiere normalmente un órgano en las diversas especies de un mismo grupo, tanto más sujeto a anomalías está en los individuos.

Según la teoría ordinaria de que cada especie ha sido creada independientemente, ¿por qué la parte del organismo que difiere de la misma parte de otras especies creadas independientemente tendría que ser más variable que aquellas partes que son muy semejantes en las diversas especies? No veo que pueda darse explicación alguna. Pero, según la teoría de que las especies son solamente variedades muy señaladas y determinadas, podemos esperar encontrarlas con frecuencia variando todavía en aquellas partes de su organización que han variado en un período bastante reciente y que de este modo han llegado a diferir. O, para exponer el caso de otra manera: los puntos en que todas las especies del género se asemejan entre sí y en que difieren de los géneros próximos se llaman caracteres genéricos, y estos caracteres se pueden atribuir a herencia de un antepasado común, pues rara vez puede haber ocurrido que la selección natural haya modificado exactamente de la misma manera varias especies distintas adaptadas a costumbres más o menos diferentes; y como estos caracteres, llamados genéricos, han sido heredados antes del período en que las diversas especies se separaron de su antepasado común, y, por consiguiente, no han variado o llegado a diferir en grado alguno, o sólo en pequeño grado, no es probable que varíen actualmente. Por el contrario, los puntos en que unas especies difieren de otras del mismo género se llaman caracteres específicos; y como estos caracteres específicos han variado y llegado a diferir desde el período en que las especies se separaron del antepasado común, es probable que con frecuencia sean todavía variables en algún grado; por lo menos, más variables que aquellas partes del organismo que han permanecido constantes durante un período larguísimo.

Publicado por Webmaster en 5:27 0 comentarios  

Los órganos desarrollados en una especie en grado o modo extraordinarios, en comparación del mismo órgano en especies afines, tienden a ser sumamente variables

Hace algunos años me llamó mucho la atención una observación hecha por míster Waterhouse sobre el hecho anterior. El profesor Owen también parece haber llegado a una conclusión casi igual. No hay que esperar el intentar convencer a nadie de la verdad de la proposición precedente sin dar la larga serie de hechos que he reunido y que no pueden exponerse aquí. Puedo únicamente manifestar mi convicción de que es esta una regla muy general. Sé que existen diversas causas de error, mas espero que me he hecho bien cargo de ellas. Ha de entenderse bien que la regla en modo alguno se aplica a ningún órgano, aun cuando esté extraordinariamente desarrollado, si no lo está en una o varias especies, en comparación con el mismo órgano en muchas especies afines. Así, el ala del murciélago es una estructura anómala en la clase de los mamíferos; pero la regla no se aplicaría en este caso, pues todo el grupo de los murciélagos posee alas; se aplicaría sólo si alguna especie tuviese alas desarrolladas de un modo notable en comparación con las otras especies del mismo género.

La regla se aplica muy rigurosamente en el caso de los caracteres sexuales secundarios cuando se manifiestan de modo extraordinario. La expresión caracteres sexuales secundarios empleada por Hunter se refiere a los caracteres que van unidos a un sexo, pero no están relacionadas directamente con el acto de la reproducción. La regla se aplica a machos y hembras, pero con menos frecuencia a las hembras, pues éstas ofrecen pocas veces caracteres sexuales secundarios notables. El que la regla se aplique tan claramente en el caso de los caracteres sexuales secundarios puede ser debido a la gran variabilidad de estos caracteres -manifiéstense o no de modo extraordinario-; hecho del que creo que apenas puede caber duda.

Pero que nuestra regla no está limitada a los caracteres sexuales secundarios se ve claramente en el caso de los cirrípedos hermafroditas; cuando estudiaba yo este orden presté particular atención a la observación de míster Waterhouse, y estoy plenamente convencido de que la regla casi siempre se confirma. En una obra futura daré una lista de todos los casos más notables; aquí citaré solo uno, porque sirve de ejemplo de la regla en su aplicación más amplia. Las valvas operculares de los cirrípedos sesiles (balanos) son, en toda la extensión de la palabra, estructuras importantísimas y difieren poquísimo, aun en géneros distintos; pero en las diferentes especies de un género, Pyrgoma, estas valvas presentan una maravillosa diversidad, siendo algunas veces las valvas homólogas en las diferentes especies de forma completamente distinta, y la variación en los individuos de la misma especie es tan grande, que no hay exageración en decir que las variedades de una misma especie difieren más entre sí en los caracteres derivados de estos importantes órganos que difieren las especies pertenecientes a otros géneros distintos.

Como en las aves los individuos de una misma especie que viven en el mismo país varían poquísimo, he prestado a ellos particular atención, y la regla parece ciertamente confirmarse en esta clase. No he podido llegar a comprobar si la regla se aplica a las plantas, y esto me haría vacilar seriamente en mi creencia en su exactitud, si la gran variabilidad de las plantas no hubiese hecho especialmente difícil comparar sus grados relativos de variabilidad.

Cuando vemos una parte u órgano desarrollado en un grado o modo notables en una especie, la presunción razonable es que el órgano o parte es de suma importancia para esta especie, y, sin embargo, en este caso está muy sujeto a variación. ¿Por qué ha de ser así? Según la teoría de que cada especie ha sido creada independientemente, con todas sus partes tal como ahora las vemos, no puedo hallar explicación alguna; pero con la teoría de que grupos de especies descienden de otras especies y han sido modificados por la selección natural, creo que podemos conseguir alguna luz. Permítaseme hacer primero algunas observaciones preliminares: Si en los animales domésticos cualquier parte de animal, o el animal entero, son desatendidos y no se ejerce selección alguna, esta parte -por ejemplo, la cresta de la gallina Dorking-, o toda la raza, cesará de tener carácter uniforme, y se puede decir que la raza degenera. En los órganos rudimentarios y en los que se han especializado muy poco para un fin determinado, y quizá en los grupos polimorfos, vemos un caso casi paralelo, pues en tales casos la selección natural no ha entrado, o no ha podido entrar, de lleno en juego, y el organismo ha quedado así en un estado fluctuante. Pero lo que nos interesa aquí más particularmente es que aquellas partes de los animales domésticos que actualmente están experimentando rápido cambio por selección continuada son también muy propensas a variación. Considérense los individuos de una misma raza de palomas y véase qué prodigiosa diferencia hay en los picos de las tumblers o volteadoras, en los picos y carúnculas de las carriers o mensajeras inglesas, en el porte y cola de las colipavos, etc., puntos que son ahora atendidos principalmente por los avicultores ingleses. Hasta en una misma sub-raza, como en la paloma volteadora de cara corta, hay notoria dificultad para obtener individuos casi perfectos, pues muchos se apartan considerablemente del standard o tipo adoptado. Verdaderamente puede decirse que hay una constante lucha entre la tendencia a volver a un estado menos perfecto, junto con una tendencia innata a nuevas variaciones, de una parte, y, de otra, la influencia de la continua selección para conservar la raza pura. A la larga, la selección triunfa, y nunca esperamos fracasar tan completamente que de una buena casta de volteadoras de cara corta obtengamos una paloma tan basta como una volteadora común. Pero mientras la selección avance rápidamente hay que esperar siempre mucha variación en las partes que experimentan modificación.

Volvamos ahora a la naturaleza. Cuando una parte se ha desarrollado de un modo extraordinario en una especie, en comparación con las otras especies del mismo género, podemos sacar la conclusión de que esta parte ha experimentado extraordinaria modificación desde el período en que las diferentes especies se separaran del tronco común del género. Este período poas veces será extremadamente remoto, pues las especies rara vez persisten durante más de un período geológico. Modificaciones muy grandes implican variabilidad grandísima, muy continuada, que se ha ido acumulando constantemente por selección natural para beneficio de la especie. Pero como la variabilidad del órgano o parte extraordinariamente desarrollados ha sido tan grande y continuada dentro de un período no demasiado remoto, tenemos que esperar encontrar todavía, por regla general, más variabilidad en estas partes que en otras del organismo que han permanecido casi constantes durante un período mucho más largo, y yo estoy convencido de que ocurre así.

No veo razón para dudar de que la lucha entre la selección natural, de una parte, y la tendencia a reversión y la variabilidad, de otra, cesarán con el transcurso del tiempo, y que los órganos más extraordinariamente desarrollados pueden hacerse constantes. Por consiguiente, cuando un órgano, por anómalo que sea, se ha transmitido, aproximadamente en el mismo estado, a muchos descendientes modificados, como en el caso del ala del murciélago, tiene que haber existido, según nuestra teoría, durante un inmenso período, casi en el mismo estado, y de este modo, ha llegado a no ser más variable que cualquier otra estructura. Sólo en estos casos, en los cuales la modificación ha sido relativamente reciente y extraordinariamente grande, debemos esperar encontrar la variabilidad generativa, como puede llamársele, presente todavía en sumo grado, pues, en este caso, la variabilidad raras veces habrá sido fijada todavía por la selección continuada de los individuos que varíen del modo y en el grado requeridos y por la exclusión continuada de los que tiendan a volver a un estado anterior y menos modificado.

Las conformaciones múltiples rudimentarias y de organización inferior son variables

Publicado por Webmaster en 5:26 0 comentarios  

Las conformaciones múltiples rudimentarias y de organización inferior son variables

Según señaló Isidore Geoffroy Saint-Hilaire, parece ser una regla, tanto en las especies como en las variedades, que cuando alguna parte u órgano se repite muchas veces en el mismo individuo -como las vértebras en las culebras y los estambres en las flores poliándricas-, el número es variable, mientras que la misma parte u órgano, cuando se presenta en número menor, es constante. El mismo autor, igualmente que algunos botánicos, ha observado además que las partes múltiples están muy sujetas a variar de conformación. Como la «repetición vegetativa» -para usar la expresión del profesor Owen- es una señal de organización inferior, la afirmación precedente concuerda con la opinión común de los naturalistas de que los seres que ocupan lugar inferior en la escala de la naturaleza son más variables que los que están más arriba. Supongo que la inferioridad significa aquí que las diferentes partes de la organización están muy poco especializadas para funciones particulares, y, mientras que una misma parte tiene que realizar labor diversa, podemos quizá comprender por qué tenga que permanecer variable, o sea porque la selección natural no conserve o rechace cada pequeña variación de forma tan cuidadosamente como cuando la parte ha de servir para algún objeto especial, del mismo modo que un cuchillo que ha de cortar toda clase de cosas puede tener una forma cualquiera, mientras que un instrumento destinado a un fin determinado tiene que ser de una forma especial. La selección natural, no hay que olvidarlo, puede obrar solamente mediante la ventaja y para la ventaja de cada ser.

Los órganos rudimentarios, según se admite generalmente, propenden a ser muy variables. Insistiremos sobre este asunto, y sólo añadiré aquí que su variación parece resultar de su inutilidad y de que la selección natural, por consiguiente, no ha tenido poder para impedir las variaciones de su estructura.

Entradas antiguas Inicio
Suscribirse a: Entradas (Atom)
  • http://andresarbelaezocampo.blogspot.com
  • http://tomas-velez.blogspot.com
  • http://biologia11a.blogspot.com
  • http://andrescolorado.blogspot.com
  • http://samuelbiologia.blogspot.com

2007 Diseño original por Free CSS Templates | Adaptación a Blogger por Blog y Web

2007 Eclipse